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Abstract

There is a growing appreciation that hidden sector dynamics may affect the supersym-
metry breaking parameters in the visible sector (supersymmetric standard model), espe-
cially when the dynamics is strong and superconformal. We point out that there are effects
that have not been previously discussed in the literature. For example, the gaugino masses
are suppressed relative to the gravitino mass. We discuss their implications in the context
of various mediation mechanisms. The issues discussed include anomaly mediation with
singlets, the µ (Bµ) problem in gauge and gaugino mediation, and distinct mass spectra
for the superparticles that have not been previously considered.
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1 Introduction

Supersymmetry has been widely recognized as an excellent solution to the hierarchy problem, as

long as the superparticle masses are below the TeV scale. However, such low scale supersymmetry

is in conflict with the data from flavor physics, unless the spectrum is (close to) that of minimal

flavor violation, i.e., violation of the U(3)5 flavor symmetry comes only from the standard model

Yukawa couplings. There are several promising ways to mediate supersymmetry breaking effects

preserving this property, for example, gauge mediation [1, 2], anomaly mediation [3, 4], and

gaugino mediation [5].

One interesting possibility for the origin of a hierarchically small scale for supersymmetry

breaking is dynamical supersymmetry breaking [6]. Supersymmetry breaking is triggered at low

energies by nontrivial infrared gauge dynamics of the hidden sector, which is then transmitted

to the supersymmetric standard model (SSM) sector through a mediation mechanism preserving

flavor. Traditionally, the spectrum of the superparticles has been calculated using the SSM

renormalization group equations below the scale of mediation. There is, however, a growing

appreciation that the dynamics of the hidden sector may affect the supersymmetry breaking

parameters in the SSM sector through renormalization group evolution between the mediation

scale and the scale where the hidden sector fields decouple.

One of the most drastic examples of hidden sector dynamics is conformal sequestering [7],

which occurs when the hidden sector exhibits strong superconformal dynamics. (For a discussion

on the effects of the hidden sector outside of the conformal regime, see [8].) This achieves the

suppression of certain (dangerous) local operators connecting the hidden sector and SSM sector

fields, and helps one to mediate supersymmetry breaking in a flavor universal manner. The

construction is motivated by the AdS/CFT correspondence [9]. If the SSM sector is located on

the “ultraviolet brane” of a truncated AdS space [10], while the hidden sector is on the “infrared

brane,” the physical separation between the two sectors due to the AdS bulk can be interpreted in

terms of conformal dynamics in four dimensions. This helps us see that purely four-dimensional

theories can achieve apparent sequestering due to the strong conformal dynamics of the hidden

sector. This class of dynamics has been further discussed in [11, 12, 13].

In this paper, we point out that hidden sector conformal dynamics has additional effects

on the SSM sector parameters that have not been discussed in the literature. Namely, opera-

tors that are linear in a singlet field in the hidden sector are sequestered by the wavefunction

renormalization factor relative to the gravitino mass. Note that the authors of Ref. [11] stated

that these operators are not sequestered, which we do not agree with. There are at least three

immediate consequences of this observation. (1) Anomaly mediation does not require the ab-

sence of singlets in the hidden sector, as the gaugino masses are sequestered and the anomaly
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mediated piece can dominate. (2) Conformal hidden sector dynamics can make gravity mediated

contributions more harmful in gauge and gaugino mediated models, depending on the dynamics.

(3) The µ (Bµ) problem in gauge and gaugino mediation can in principle be solved by strong

conformal dynamics, although it requires certain assumptions on the hidden sector dynamics.

In addition, if the sequestering effects are sufficiently strong, we find very specific mass spectra

for the superparticles that have not been discussed in the literature and can be tested at future

experiments.

The organization of the paper is as follows. In section 2, we provide a general discussion

on the effects of a strong hidden sector on local operators connecting the hidden and SSM

sector fields. Section 3 summarizes the consequences of these effects on the SSM parameters.

In section 4 we discuss possible scenarios in which the dominant mediation mechanism is gauge

mediation. It is shown that strong conformal dynamics can provide a solution to the µ (Bµ)

problem and/or lead to distinct spectra for the superparticles. Gaugino and anomaly mediation

are considered in sections 5 and 6. Finally, discussion and conclusions are given in section 7.

2 General Discussions

In this section, we present general discussions on the renormalization of operators that couple

the hidden and SSM sector fields due to strong conformal dynamics in the hidden sector.

In many models of supersymmetry breaking, there are both gauge non-singlet and singlet

fields in the hidden sector. We generically call them q and S, respectively, without referring to

particular models. They may be “elementary” or “composite,” but this distinction is not very

clear in superconformal theories as they may allow for several inequivalent descriptions (duality).

To keep the discussion uniform, we always take the normalization such that these fields have

mass dimension +1.1 Note, however, that we are interested in models where the q and S fields

participate in strong conformal dynamics, and hence their scaling properties are not dictated by

their classical dimensions but rather their conformal dimensions. We will generically refer to the

chiral superfields of the SSM sector as φ.

The direct couplings between the hidden and SSM sector fields can come in various local

operators. They are all higher dimension operators and suppressed by some energy scale M .

In gauge mediation models, it is related (but not necessarily equal to) the messenger scale. In

anomaly and gaugino mediated models, it is (generically) close to the Planck scale.

One class of direct interaction operators is quadratic in the hidden sector fields. For example,

1For example, the meson field Q̄Q in supersymmetric QCD naturally has mass dimension +2, while we
normalize it as S = Q̄Q/Λ∗, with Λ∗ being the strong scale.
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operators that contribute to the scalar squared masses are

Oφ :
∫

d4θ cq
φ

q†q

M2
φ†φ,

∫

d4θ cS
φ

S†S

M2
φ†φ. (1)

Other operators of interest are

OBµ :
∫

d4θ cq
Bµ

q†q

M2
HuHd + h.c.,

∫

d4θ cS
Bµ

S†S

M2
HuHd + h.c., (2)

that contribute to the Bµ parameter (the holomorphic supersymmetry breaking mass squared)

in the Higgs sector. Here and below, the coefficients c’s are dimensionless.

Using the singlet fields, we can also consider operators linear in the hidden sector fields. The

gaugino mass operator is

Oλ :
∫

d2θ cS
λ

S

M
WaαWa

α + h.c., (3)

where Wa
α (a = 1, 2, 3) are the field strength superfields for the standard model gauge group.

The operators

OA :
∫

d4θ cS
A

S

M
φ†φ + h.c.. (4)

contribute to the A and B parameters (the parameters associated with holomorphic supersym-

metry breaking scalar trilinear and bilinear interactions), as well as the scalar masses |A|2.
Finally, the operator

Oµ :
∫

d4θ cS
µ

S†

M
HuHd + h.c., (5)

contributes to the µ parameter (the supersymmetric Higgs mass).2

Note that we have used the formalism of global supersymmetry in the above expressions.

This is sufficient for the purpose of discussing operators that arise from integrating out a set of

messenger fields, e.g., gauge mediation. Later, we will discuss gravity and anomaly mediated

contributions, which require a formulation with local supersymmetry. The terms integrated over

a half of the superspace above will then include the conformal compensator field Φ as
∫

d2θ Φ3,

while the terms over the full superspace as
∫

d4θ Φ†Φ [14]. The latter should be regarded not

as a part of the Kähler potential K, but rather the superspace density f = −3M2
Pl e

−K/3M2

Pl

before the Weyl scaling that removes the field dependence in the Planck scale. Here, MPl is

the reduced Planck scale. After the Weyl scaling, each chiral superfield needs to be further

rescaled by 1/Φ to obtain the usual kinetic terms, leaving a nontrivial Φ dependence in the

various mass parameters. In vacua with supersymmetry breaking and no cosmological constant,

Φ = 1 + θ2m3/2, where m3/2 is the gravitino mass. As we continue our discussion, it should be

2In principle, one may also consider direct superpotential couplings between the hidden and SSM sector fields,
such as

∫

d2θ SHuHd or
∫

d2θ SQiUjHu/M∗. We assume their absence throughout the paper.
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understood that there is an implicit compensator dependence in all of the mass parameters, and

that any sequestering effects are occurring in f , and not in K.

In many cases, some of the operators Eqs. (1 – 5) are unwanted. The operators Oφ in Eq. (1)

and OA in Eq. (4) are potential sources of flavor changing neutral currents. All of them are

potential sources of CP violation. Both of these are constrained tightly by the data. The

purpose of conformal sequestering, then, is to help suppress any unwanted operators.

The main point is that, as long as the relevant fixed point is infrared attractive, conformal

field theories can help achieve this suppression. To see this, we can regard the SSM sector

fields as background fields, and rescale the hidden sector fields to absorb the operators Oφ,Bµ

in Eqs. (1, 2) into coupling constants of the theory. As long as the fixed point is stable against

deformations of the dimensionless coupling constants, the coupling constants flow to their in-

frared fixed point values by power laws, losing “memory” of the initial conditions. Therefore,

the unwanted operators can be suppressed by powers of energy scales. If we can suppress all

unwanted operators by power laws, while at the same time keeping those we need, the conformal

sequestering is a success.

Most of the discussions on conformal sequestering so far have focused on the operators

quadratic in the hidden sector fields. However, it is important to consider operators linear

in the hidden sector fields as well. To the best of the current authors’ knowledge, the only paper

that has addressed this class of operators is Ref. [11]. They stated that this class of operators is

not suppressed relative to the gravitino mass. This observation would have allowed for an easy

solution to the Bµ problem in gauge mediation, since the unwanted operator OBµ of Eq. (2)

would then be power suppressed at low energies while keeping the necessary operators Oλ,µ

of Eqs. (3, 5) (see section 4 for more detail). Unfortunately, we disagree with this statement.

We instead find that the conformal sequestering is more complete than what they suggested;

operators linear in the hidden sector fields are also suppressed relative to the gravitino mass.

To make the discussion more concrete, let us introduce a couple of energy scales. We already

defined M as the scale appearing in the higher dimension operators that couple the hidden and

SSM sector fields. This may be close to the Planck scale for anomaly or gaugino mediated

supersymmetry breaking, or it may be a combination of energy scales in general, such as in

gauge mediated supersymmetry breaking. We also define the energy scale Λ∗ as the scale where

the hidden sector enters into the conformal regime.

Since S is singlet under the hidden sector gauge group, the superconformal algebra requires

that it must have an R charge greater than 2/3 to preserve unitarity [15]. The anomalous dimen-

sion is given in terms of the R charge by 3R/2− 1, and hence the wavefunction renormalization

factor

L =
∫

d4θ ZS(µR) S†S, (6)
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always satisfies

ZS(µR) =

(

Λ∗

µR

)3R(S)−2

> 1, (7)

for µR < Λ∗, where µR is the renormalization scale, R(S) the R charge of S, and we have taken

ZS(Λ∗) = 1. There are no 1PI diagrams that renormalize operators linear in S, and hence Oλ

in Eq. (3), OA in Eq. (4), and Oµ in Eq. (5) receive only the wavefunction renormalization

Z
−1/2
S (µR). Note that this effect is always a suppression of the operators. Therefore, their

respective forms at the energy scale µR ≪ Λ∗ are
∫

d2θ Z
−1/2
S (µR) cS

λ

S

M
WaαWa

α + h.c., (8)

for the gaugino masses,
∫

d4θ Z
−1/2
S (µR) cS

A

S

M
φ†φ + h.c., (9)

for the A, B parameters, and the |A|2 part of the scalar squared masses, and

∫

d4θ Z
−1/2
S (µR) cS

µ

S†

M
HuHd + h.c., (10)

for the µ parameter.

The S field acquires an F -component vacuum expectation value (VEV) if there is a linear

term in the superpotential, i.e., if there is an operator
∫

d2θ f 2S + h.c., (11)

where f has mass dimension one. In the basis where the S field is canonically normalized, this

linear term is also suppressed in the infrared as
∫

d2θ Z
−1/2
S (µR) f 2S + h.c.. (12)

The F -component VEV for the canonically normalized S is

FS = −Z
−1/2
S (µR) f ∗2, (13)

and the vacuum energy V0 = |Z−1/2
S (µR) f 2|2, and hence the gravitino mass is

m3/2 ≈ Z
−1/2
S (µR)

|f |2
MPl

. (14)

The apparent suppression Z
−1/2
S (µR) of Eq. (14), however, does not have much physical meaning,

since it suppresses all the µ and supersymmetry breaking parameters equally. For example, the

gaugino masses are given by

|Ma| ≈ Z
−1/2
S (µR)

|cS
λFS|
M

= Z−1
S (µR)

|cS
λf 2|
M

. (15)
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In this last expression, one factor of Z
−1/2
S (µR) comes from that of Eq. (14), but the other

Z
−1/2
S (µR) from the suppression of the coefficient of Eq. (8). It is this latter Z

−1/2
S (µR) that

provides the suppression of the gaugino masses relative to the gravitino mass: Ma/m3/2 ∼
Z

−1/2
S (µR). Similar analyses also apply to the µ and A parameters. Therefore, the gaugino

masses, µ, and A parameters receive a stronger suppression than the gravitino mass, affecting

phenomenology and model building as we will discuss later.

In contrast to the operators linear in S, the operators Oφ,Bµ in Eqs. (1, 2) receive corrections

from 1PI diagrams in addition to the wavefunction renormalization factors. Note that the R

charges of gauge non-singlet fields can be less than 2/3 because they do not appear as asymptotic

states, and hence the standard representation theory does not apply. To simplify the discussion,

let us ignore operator mixing at this moment, and pretend that these operators renormalize by

themselves. We then find

∫

d4θ
(

µR

Λ∗

)αq

Z−1
q (µR) cq

φ

q†q

M2
φ†φ,

∫

d4θ
(

µR

Λ∗

)αS

Z−1
S (µR) cS

φ

S†S

M2
φ†φ, (16)

for the scalar squared masses, and

∫

d4θ
(

µR

Λ∗

)αq

Z−1
q (µR) cq

Bµ

q†q

M2
HuHd + h.c.,

∫

d4θ
(

µR

Λ∗

)αS

Z−1
S (µR) cS

Bµ

S†S

M2
HuHd + h.c.,

(17)

for the Bµ term, where Zq(µR) is defined analogously to ZS(µR); see Eq. (7).3 The exponents

αq and αS are common to the operators in Eqs. (16) and (17), since the dependence of these

operators on the hidden sector fields is the same. Note that here we defined αq,S to parameterize

the 1PI corrections; for example, if one of the operators in Eqs. (16, 17) corresponds to a

conserved current in the hidden sector, the (µR/Λ∗)
αq,S factor exactly cancels the wavefunction

renormalization factor Z−1
q,S(µR).

An interesting and often crucial question is the relative speed of suppression (sequestering)

between the operators quadratic and linear in S. Suppose that there is no mixing between

operators quadratic in S and those quadratic in q, and that only S has a supersymmetry breaking

VEV. Then, if there were no extra exponent αS, all the µ and soft parameters would receive

similar suppressions as Ma ∼ µ ∼ A ∝ Z
−1/2
S FS and m2

I ∼ Bµ ∝ Z−1
S F 2

S , while m3/2 ∝ FS.

Here, m2
I represent the supersymmetry breaking scalar squared masses. Realistically, however,

the situation is not that simple. The operators of the form Oφ in Eq. (1) (and OBµ in Eq. (2)) in

general mix with each other, and αq,S are nonzero. In this case, the suppression of the operators

quadratic in S is controlled by the smallest eigenvalue of the 2γiδij +αij matrix, which we define

as 2γS + α̂S. Here, i, j runs over q and S, and γq ≡ 3R(q)/2 − 1 and γS ≡ 3R(S)/2 − 1 are the

3If the operators Oφ,Bµ in Eqs. (1, 2) are generated at a scale mf < Λ∗, the factors (µR/Λ∗)
αq,S in Eqs. (16, 17)

should be replaced by (µR/mf)αq,S .

6



anomalous dimensions of the q and S fields. (For a detailed discussion on operator mixing, see

Appendix A.)

One additional subtlety is that the operators quadratic in S also mix in a calculable way

with the operators linear in S. In particular, for the non-Higgs fields it is really the combination

cS
φ −|cS

A|2 that ends up being suppressed by the exponent 2γS + α̂S (after potentially mixing with

other quadratic operators), and this is the same combination of operators that contributes to

the scalar squared masses. Similarly, for the Higgs fields it is the combination cS
φ − |cS

A|2 − |cS
µ|2

that ends up being suppressed by the same exponent, and this is the operator that contributes

to m2
Hu,d

+ µ2. Finally, the combination of operators that contributes to the Bµ parameter,

cS
Bµ − cS

µ(cS
A,Hu

+ cS
A,Hd

), is renormalized in the same way.

One can then obtain the qualitatively different outcomes:

Case 1: M2
a ∼ µ2 ∼ A2 ≫ m2

Qi,Ui,Di,Li,Ei
∼ Bµ ∼ m2

Hu,d
+ µ2 (α̂S > 0),

Case 2: M2
a ∼ µ2 ∼ A2 ≪ m2

Qi,Ui,Di,Li,Ei
∼ Bµ ∼ m2

Hu,d
(α̂S < 0),

(18)

depending on the sign of the exponent α̂S. (In the absence of the operator mixing, α̂S = αS.) In

addition, since all the soft parameters are suppressed relative to the gravitino mass (except for

those that correspond to conserved currents), it is also possible that they are all subdominant

relative to the gravitino mass, in which case anomaly mediation may be dominant (Case 3).

Unfortunately, for a given strongly coupled conformal theory, it is not possible to work out

the signs or magnitudes of the exponents αq,S with the currently available technology. We will

therefore discuss all three cases on equal footing in the rest of the paper.

Note that we are only considering operators linear or quadratic in the hidden sector fields

because they are the lowest dimension operators that contribute to the soft supersymmetry

breaking parameters in the SSM sector. However, due to the incalculable strong dynamics,

we cannot exclude the possibility that even higher dimension operators, i.e., cubic, quartic, or

beyond in the hidden sector fields, receive anomalously large enhancements relative to the lower

dimension operators and become as important. See section 7 for more on this point.

3 Consequences on the SSM Parameters

What effect does the strong hidden sector renormalization, discussed in the previous section,

have on the µ and supersymmetry breaking parameters in the SSM sector? As we have seen,

terms linear in the S field are power suppressed in a way that is controlled exactly by the R

charge of S. On the other hand, particular combinations of terms quadratic in the S field and

terms linear in the S field are suppressed (assuming the fixed point is infrared attractive) by

an incalculable amount, determined by the rate at which the theory flows back towards the

7



conformal fixed point. Rather generically, if the effects are strong, we expect that one of these

classes of operators will completely dominate over the other. An important point here is that the

relative strengths of the operators linear in S remain fixed, since they are all suppressed by the

same amount. Similarly, the relative strengths of the operators quadratic in S (in combination

with linear operators) also do not change.4

The operators linear in S, Oλ,A,µ in Eqs. (3, 4, 5), contribute to the gaugino masses Ma, µ

parameter, scalar squared masses m2
I , and A and B parameters. Note, however, that because

the scalar masses, A parameters, and B parameter are all generated by the single operator OA

in Eq. (4), there are simple relations among them. On the other hand, the operators quadratic

in S, Oφ,Bµ in Eqs. (1, 2), also independently contribute to the scalar masses and Bµ term, and

the dynamics may actually drive these to cancel the contributions from the linear operators.

Thus, if the hidden sector effects are strong, we are generically led to one of the the following

situations:

Case 1: Linear operator dominance

In this case, any initial conditions in the quadratic operators are suppressed, and they are dy-

namically driven to cancel out the contributions to the soft parameters from the linear operators.

As long as these linear operators are all generated at approximately the same size, we obtain the

following spectrum at the scale where the hidden sector exits from the conformal fixed point:

m2
Qi,Ui,Di,Li,Ei

= 0, m2
Hu,d

= −µ2,

aIJK = yIJK(AI + AJ + AK), (19)

B = 0,

where I, J, K runs over the SSM matter and Higgs fields, Qi, Ui, Di, Li, Ei, Hu, Hd (i = 1, 2, 3),

and AI represent the coefficients of the operators
∫

d4θ Sφ†
IφI times FS, which are of the same

order as the gaugino masses and the µ parameter

Ma ≈ µ ≈ AI . (20)

The soft parameters m2
I and aIJK are defined by Lsoft = −m2

Iφ
†
IφI − (aIJKφIφJφK + h.c.), and

yIJK are the Yukawa couplings: W = yIJKφIφJφK . Here, we have neglected, for simplicity,

possible mixings between different generations in AI , which may be present in general.

4In the case that there is operator mixing and/or multiple singlets with F -component VEVs, the relative
strengths among linear operators and/or quadratic operators can in principle change depending on how they
project onto the “eigenvectors” of the renormalization group evolution. These effects, however, are typically of
O(1) if present, and do not affect the arguments below.
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In order to avoid excessive flavor changing processes, the parameters AI must take a special

form in flavor space. One simple possibility is that the AI operators are generated only for the

Higgs and third generation matter fields. In this case, we obtain

m2
I = 0, (21)

aIJHu
= yIJHu

AHu
, aIJHd

= yIJHd
AHd

, (22)

for the first two generation matter fields, and

m2
Q3,U3,D3,L3,E3

= 0, m2
Hu,d

= −µ2, (23)

at = yt(AQ3
+AU3

+AHu
), ab = yb(AQ3

+AD3
+AHd

), aτ = yτ (AL3
+AE3

+AHd
), (24)

B = 0, (25)

for the third generation matter and Higgs fields. Here, yt, yb, yτ are the top, bottom, and tau

Yukawa couplings, at, ab, aτ the corresponding scalar trilinear interactions, and

Ma ≈ µ ≈ AI , (26)

where I = Q3, U3, D3, L3, E3, Hu, Hd. A special case of this spectrum is obtained if only the

Higgs fields have the AI operators: AQ3
= AU3

= AD3
= AL3

= AE3
= 0.

The spectra given above represent the running parameters evaluated at the scale where the

hidden sector exits from the conformal regime, which is generically much larger than the weak

scale. The low-energy superparticle masses are then obtained by evolving these parameters down

to the weak scale using the renormalization group equations. Since the hidden sector already

leaves the strong conformal regime, these evolutions are dominated by loops of the SSM states,

i.e., the running is well approximated by the standard SSM renormalization group equations.

Case 2: Quadratic operator dominance

In this case, the quadratic operators (or at least one of them in the case that there are operator

mixings) are suppressed more slowly than the linear operators. This can easily be the case, for

example, if the quadratic operators contain a global symmetry current(s) of the hidden sector,

which does not receive any suppression factor. This leads to the split spectrum

m2
I , Bµ ≫ M2

a , µ2, a2
IJK , (27)

at the scale where the hidden sector exits the conformal regime. This splitting is preserved by

renormalization group evolution at lower energies, so if the splitting is very large, the spectrum

requires a severe fine-tuning in electroweak symmetry breaking.
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The spectrum, however, does not require fine-tuning if the splitting is not very large. The

exact spectrum is determined by the mediation mechanism, and may show a distinct pattern

which is not common to the scenarios in which the hidden sector dynamics are not taken into

account. If we take gauge mediation, for example, we obtain a somewhat interesting spectrum

in which the number of messenger fields appears to be fractional, as we will see in section 4.

Case 3: Anomaly mediation dominance

In both of the previous situations, it is worth emphasizing that all the parameters are being

suppressed relative to the gravitino mass m3/2 ≈ FS/MPl, except for operators corresponding to

conserved currents of the hidden sector, which we assume to be absent here. If the suppressions

of both types of operators are strong enough, then, we will be led to the situation where the

anomaly mediated contribution dominates. It is also possible, depending on the amount of

suppressions, that the dominant contributions to the SSM sector parameters come both from

anomaly mediation and some of the local operators involving the S field. These points will be

discussed further in section 6.

4 Gauge Mediation

In this section, we take gauge mediation as the dominant mediation mechanism generating the

local operators in Eqs. (1 – 5), and consider the possible implications of the hidden sector

dynamics discussed in the previous sections. The situation is different depending on which of

Case 1 or Case 2 is realized as a result of the hidden sector dynamics. We first discuss the

implications of Case 1 in subsection 4.1, and then discuss those of Case 2 in subsection 4.2.

Finally, we discuss the competition with gravity and anomaly mediation in subsection 4.3.

4.1 Solution to the µ (Bµ) problem with conformal dynamics

A major difficulty of the gauge mediation scenario is the so-called µ problem — it is difficult

to obtain phenomenologically acceptable values for the µ and Bµ parameters. In fact, a careful

look at the problem shows that it is really a Bµ problem, rather than a µ problem (see, e.g.,

[16]). In gauge mediation, the gaugino masses, Ma, and the scalar squared masses, m2
I , arise

at one and two loops, respectively, so that these masses have the comparable size Ma ≈ mI ≈
(g2/16π2)(Fmess/Mmess), where Fmess/Mmess ≈ (10 – 100) TeV is the scale characterizing the

strength of the mediation. Now, it is not so difficult to come up with a model in which the

µ term is generated at one loop, µ ≈ (1/16π2)(Fmess/Mmess), so that it is comparable to the

gaugino and scalar masses. However, such a model also tends to generate the Bµ term at one

10



loop, Bµ ≈ (1/16π2)(Fmess/Mmess)
2, leading to the parameter B being one-loop enhanced relative

to the other supersymmetry breaking masses, B ≡ Bµ/µ ≈ Fmess/Mmess. Since the size of B

should be smaller than or of the order of the weak scale to obtain successful phenomenology,

this is not acceptable.

We point out here that this problem can be solved if the hidden sector has strong conformal

dynamics exhibiting the property described as Case 1 in section 3. Suppose that gauge mediation

arises due to vector-like messenger superfields f, f̄ having a mass mf and a coupling to the hidden

sector superfield S in the superpotential [17]:

W = −mf f̄ f + λSf̄f. (28)

Here, S is a superfield responsible for supersymmetry breaking, 〈S〉 = θ2FS, and the coupling λ

encodes the information on the classical dimension of the (composite) operator S:

λ = O

(

(

Λ∗

M∗

)dS−1
)

. (29)

Here, M∗ is the cutoff scale of the theory, which can be taken to be around the Planck scale

M∗ ≈ MPl, and dS the classical mass dimension of S. The parameter mf can be taken real and

positive without loss of generality.

At the scale mf , the messenger fields are integrated out. This generates the operators

L =
1

2
Df

∫

d2θ
∑

a

λ(mf)

16π2mf
S WaαWa

α + h.c., (30)

where a = 1, 2, 3 represents the standard model gauge groups, Wa
α the corresponding field-

strength superfields, and Df the Dynkin index of the messengers (1 for 5 + 5∗, 3 for 10 + 10∗

etc), and

L = −Df

∫

d4θ
∑

I

∑

a

2g4
aC

a
I |λ(mf)|2

(16π2)2m2
f

S†S φ†
IφI , (31)

where ga are the standard model gauge couplings evaluated at mf , and Ca
I the quadratic Casimir

coefficients. Here, λ(mf) is the physical coupling λ evaluated at µR ≈ mf :

λ(mf ) =
(

mf

Λ∗

)γS

λ. (32)

After S acquires a supersymmetry breaking VEV, the operators of Eqs. (30) and (31) become

the gaugino masses and scalar squared masses, respectively.

In order to solve the µ problem, the µ parameter must be generated with a size comparable

to the gaugino masses. It is, in fact, not very difficult to generate the µ term also at one loop as

L ≈
∫

d4θ
λ(mf )

∗

16π2mf
S† HuHd + h.c., (33)

11



(for an example of such models, see Appendix B). This leads to a µ parameter of the same order

as the gaugino and scalar masses generated by Eqs. (30, 31):

Ma ≈ mI ≈ µ ≈
∣

∣

∣

∣

∣

λ(mf)FS

16π2mf

∣

∣

∣

∣

∣

. (34)

The problem is that in any simple models producing the operator Eq. (33) at one loop, the same

one-loop diagram also generates another operator

L ≈
∫

d4θ
|λ(mf )|2
16π2m2

f

S†S HuHd + h.c., (35)

which leads to a large B parameter

B ≡ Bµ

µ
≈
∣

∣

∣

∣

∣

λ(mf)FS

mf

∣

∣

∣

∣

∣

≫ Ma, mI , µ. (36)

This is nothing but the Bµ problem in gauge mediation discussed earlier. Models that generate

the operator Eq. (33) at one loop also typically generate the operators

L ≈
∫

d4θ

(

λ(mf )

16π2mf
S H†

uHu +
λ(mf)

16π2mf
S H†

dHd + h.c.

)

, (37)

which contribute to AHu
, AHd

, B, m2
Hu

and m2
Hd

. These operators, however, are harmless, since

the generated soft masses are of the same order as the gaugino masses, and the A terms induced

preserve flavor, i.e., aIJK are proportional to the Yukawa matrices, yIJK, in flavor space.

The operators of Eqs. (30, 31, 33, 35, 37) are the ones generated at mf and relevant for the

µ and supersymmetry breaking parameters in the SSM sector. They lead to an unacceptably

large B parameter. Note, however, that these correspond to the µ and supersymmetry breaking

masses evaluated at the scale mf . If the hidden sector interactions are strong below the scale

mf down to some scale mX where conformality is broken, as we are assuming here, then the

operators of Eqs. (30, 31, 33, 35, 37) receive strong renormalization effects in the energy interval

between mf and mX . The pattern of the soft masses at mX (≪ mf ) depends on which of Case 1

and Case 2 is realized, and here we assume that Case 1 is realized. In this case, the operators

Eqs. (31, 35) (in particular combinations with the linear operators) are damped compared with

the operators Eqs. (30, 33, 37), with the relative strengths of the operators Eqs. (30), (33) and

(37) preserved.

The µ and supersymmetry breaking parameters at mX then satisfy the pattern of Eqs. (21 –

26) with AQ3,U3,D3,L3,E3
= 0:

m2
Qi,Ui,Di,Li,Ei

= 0, (38)

(au)ij = (yu)ijAHu
, (ad)ij = (yd)ijAHd

, (ae)ij = (ye)ijAHd
, (39)
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m2
Hu

= −µ2, m2
Hd

= −µ2, B = 0, (40)

Ma ≈ µ ≈ AHu
≈ AHd

, (41)

where (yu)ij , (yd)ij and (ye)ij are the up-type quark, down-type quark and charged lepton Yukawa

matrices, and (au)ij, (ad)ij and (ae)ij the corresponding scalar trilinear interactions. The low-

energy superparticle masses are obtained by evolving these parameters from mX down to the

weak scale. This evolution is well approximated by the standard SSM renormalization group

equations. Since both µ and B at the weak scale are the same order as the other soft masses,

the µ (Bµ) problem is solved.

The pattern in Eqs. (38 – 41) resembles that of gaugino mediation with a low compactification

scale, or standard gauge mediation with a very large number of messenger fields. These theories,

however, lead to a Landau pole for the standard model gauge couplings below the unification

scale, and thus are not compatible with perturbative gauge coupling unification. Our theory is

fully compatible with perturbative gauge coupling unification. Moreover, the present scenario

leads to particular relations for m2
Hu

, m2
Hd

, µ and B, which can be tested at future collider

experiments.

4.2 Spectrum with a fractional number of messenger fields

We now consider the case that the hidden sector exhibits the dynamics of Case 2, rather than

Case 1. This happens, for example, if one or more of the S†S operators corresponds to a

conserved global current(s) of the hidden sector dynamics. In this case, renormalization of the

operators Eqs. (30, 31, 33, 35, 37) below mf is different from that discussed in the previous

subsection. Specifically, at the scale mX where the hidden sector leaves the conformal fixed

point, the operators Eqs. (30, 33, 37) are suppressed compared with Eqs. (31, 35). This leads to

a split spectrum

m2
I ≈ Bµ ≫ M2

a ≈ µ2 ≈ A2
Hu

≈ A2
Hd

, (42)

at µR ≈ mX . The amount of the splitting depends on the explicit model as well as the distance

of the conformal running, mf/mX .

If the splitting is very large, it leads to an extremely severe fine-tuning for electroweak

symmetry breaking. This will then be interesting (only) in the sense of Ref. [18]. One interesting

point about obtaining the split spectrum in this way is that the gaugino and Higgsino masses

are naturally expected to be the same order, Ma ≈ µ.

On the other hand, if the splitting is not so large, the spectrum does not require an extreme

fine-tuning, so the scenario may be interesting in the context of weak scale supersymmetry. It

shows an interesting feature — the gaugino masses are suppressed compared to the scalar masses,

and yet relative values of the gaugino masses, as well as those of the scalar masses, exactly stay
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as in the standard gauge mediation models. This implies that we effectively obtain a fractional

number of messengers

Nmess < 1, (43)

in the standard gauge mediation formula for the gaugino and scalar masses

Ma = Nmess
g2

a

16π2

Fmess

Mmess

, (44)

m2
I = 2Nmess

∑

a

Ca
I

(

g2
a

16π2

)2 ∣
∣

∣

∣

Fmess

Mmess

∣

∣

∣

∣

2

, (45)

where Fmess/Mmess ≈ λ(mf )FS/mf in our context. This feature of the spectrum can be tested

at future collider experiments.

4.3 Competition with gravity and anomaly mediation

In this subsection we discuss the competition of the gauge mediated contribution with both

gravity and anomaly mediation. In order for the predictions in the previous subsections to

persist, the former must dominate over both of the latter.

Let us begin by estimating the size of the contributions to the supersymmetry breaking

parameters from gravity mediation. There are two classes of contributions for this: those coming

from local operators directly connecting the hidden and SSM sector fields and those arising from

supergravity terms (the contributions arising from the F -term VEV of the compensator field).5

The largest contribution for the first class typically comes from local operators of the form

∫

d4θ
1

M2
∗

S†S φ†φ, (46)

with an O(1) coefficient, where M∗ ∼ MP l is the cutoff scale.6 If S is an elementary singlet, we

also have a contribution from
∫

d4θ
1

M∗

S φ†φ. (47)

Which of Eqs. (46) and (47) gives the dominant contribution is then determined by the renor-

malization group scaling of these operators.

5The term “gravity mediation” is a misnomer for the first class, as it is not due to gravity. It simply refers
to contributions from local operators at a scale M∗ of the order of the Planck scale. We, however, stick to this
common terminology.

6If the field S is an n-body composite operator, the cutoff scale operator is suppressed by (Λ∗/M∗)
2n−2. How-

ever, there are lower dimension operators
∫

d4θ Q†Q φ†φ/M2
∗ , where Q represents the elementary fields contained

in the composite field S. We expect they are matched at the strong scale as Q†Q ≈ S†S. Therefore, we still
obtain the operator of the size given in Eq. (46).
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When we run Eq. (46) down to the scale mX where conformality is broken, we obtain

∫

d4θ
1

M2
∗

(

mX

Λ∗

)αS

Z−1
S (mX) S†S φ†φ, (48)

where αS is the same exponent that appears in the evolution of the gauge mediated quadratic

operators. (If there are multiple exponents due to operator mixing, αS is the exponent leading

to the least amount of damping, α̂S). This gives a contribution to the supersymmetry breaking

mass squared of φ of size

m2
grav ≈ Z−1

S (mX)

M2
∗

(

mX

Λ∗

)αS

|FS|2. (49)

In the case that S is an elementary singlet, Eq. (47) leads to a contribution m2
grav|sing, which is

given by Eq. (49) with αS set to zero.

The second class of contributions for gravity mediation arises from supergravity terms, i.e.,

the F -term VEV of the compensator field Φ. This gives a contribution to the B parameter of

the order of the gravitino mass

Bgrav ≈ m3/2 ≈
|FS|
MPl

. (50)

The other soft masses do not arise from this source (the classical contribution from FΦ). However,

we still need Bgrav <∼ mI at low energies for successful electroweak symmetry breaking.

Now we can compare Eqs. (49, 50) to the contribution from gauge mediation. In the case

that αS > 0 (Case 1), we should compare these to the mass scale generated from the operators

linear in S. Comparing with Eq. (49) gives

m2
grav

m2
gauge

≈ (16π2)2

λ2

m2
f

M2
∗

(

mX

Λ∗

)αS

, (51)

which can easily be small if αS is O(1) and λ is not too small (i.e., dS is not too large). Note that

the contribution m2
grav is suppressed, making it more harmless due to the conformal dynamics.

In the case that S is an elementary singlet (dS = 1), we must also consider m2
grav|sing/m

2
gauge.

This, however, can also easily be small, since λ is then expected to be of order unity.

The comparison with Eq. (50), on the other hand, gives

B2
grav

m2
gauge

≈ (16π2)2

λ2

m2
f

M2
Pl

(

Λ∗

mX

)2γS

. (52)

This can be smaller than or of O(1), i.e., the B parameter is not too large, if λ is not too small

and (Λ∗/mX)2γS not too large. As long as Eq. (52) is smaller than or of O(1), the contribution

from anomaly mediation m2
anom is always subdominant to m2

gauge, since manom ≈ Bgrav/16π2.
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In the case that αS < 0 (Case 2), we should compare the gravity and anomaly mediated

pieces to that coming from the operators quadratic in S. For the contribution of Eq. (49), we

find
m2

grav

m2
gauge

≈ (16π2)2

λ2

m2
f

M2
∗

(

Λ∗

mf

)|αS |

. (53)

In this case the sequestering effect coming from αS actually enhances the gravity mediated con-

tribution relative to the gauge mediated contribution, and so the gravity mediated contribution

dominates in a much larger portion of parameter space. If λ = O(Λ∗/M∗) (i.e., dS = 2), for

example, and we require m2
grav/m

2
gauge

<∼ 10−3, then |αS| = 1 implies that mf <∼ 10−7Λ∗. The

contribution from m2
grav|sing is always subdominant.

For the contribution of Eq. (50), we obtain

B2
grav

m2
gauge

≈ (16π2)2

λ2

m2
f

M2
Pl

(

Λ∗

mX

)2γS
(

mX

mf

)|αS |

. (54)

This also allows B2
grav/m

2
gauge

<∼ O(1). Note that, in contrast to m2
grav, B2

grav does not have

to be much smaller than the gauge mediated contribution, m2
gauge, since it does not contribute

to flavor violation. Again, as long as B2
grav/m

2
gauge

<∼ O(1), the contribution from anomaly

mediation m2
anom is subdominant because manom ≈ Bgrav/16π2.

5 Gaugino Mediation

An important ingredient for the solution to the µ (Bµ) problem discussed in section 4.1 is

to have control over the operators of the form Eq. (4), which lead to A terms (as well as B

and m2
I terms). Since these operators are not suppressed relative to the gaugino masses, their

existence with random O(1) coefficients would lead to large flavor violation at low energies.

Gauge mediation allows us to have these operators under control — in minimal gauge mediation

(without the dynamics generating µ), these operators are not generated at the leading order in

loop or Fmess/M
2
mess expansions. We then only have to require that the dynamics generating µ

does not induce these operators in such a way that they excessively violate flavor.

The argument above implies that, as long as the operators OA in Eq. (4) are under control,

the mechanism of section 4.1 can apply (not necessarily in the context of gauge mediation).

Interestingly, many theories in which the OA operators are under control have a Bµ problem

similar to that in gauge mediation. Consider, for example, the gaugino mediation scenario [5],

in which the gauge and Higgs fields propagate in the bulk of an extra dimension. The extra

dimension is compactified on an S1/Z2 with length L, and the matter fields and hidden sector

are localized on different branes. This allows us to control the OA operators. Since the super-

symmetry breaking field S and matter fields are localized on different branes, there can be no
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direct interaction between them, including the operators of the form Eq. (4) (taking φ to be the

matter fields).

The µ and supersymmetry breaking parameters are generated only by the operators of the

form Eqs. (1, 2, 3, 4, 5), localized on the hidden sector brane, with φ = Hu, Hd.
7 Scaling

the coefficients of these operators by naive dimensional analysis in higher dimensions [19], the

generated µ and Bµ parameters are

µ ≈ 16π2

CM∗L
Ma, Bµ ≈ (16π2)2

C2M∗L
M2

a , (55)

where M∗ is the cutoff scale of the theory, C the group theory factor related to the size of the

gauge group, and Ma the gaugino masses. Now, by choosing M∗L ≈ 16π2/C, we can easily have

µ ≈ Ma. This is what we would expect if the 5D gauge couplings also follow naive dimensional

analysis, since the 4D gauge couplings g4 are then given by g2
4 ≈ 16π2/CM∗L ≈ O(1). However,

this gives

B =
Bµ

µ
≈ 16π2

C
Ma, (56)

which is too large. The origin of this is that since the µ and Bµ operators both contain HuHd,

they are suppressed by the same volume factor M∗L. This, however, implies that the suppression

is canceled out in B = Bµ/µ, so that B is enhanced relative to the other soft masses. This is

analogous to the situation in gauge mediation where both µ and Bµ are suppressed by the same

one-loop factor. Note that M∗L must be larger than unity in order for the effective theory to

make sense, so this will always enhance B relative to µ.

A possible solution to this problem can now be given in the same way as before. Let us

consider that the hidden sector becomes strongly interacting at the scale Λ∗, which we take

to be close to M∗. Now, if we assume that the strong conformal dynamics realizes Case 1 in

section 3, then B is suppressed relative to µ at the scale mX , where the hidden sector leaves the

conformal regime. This solves the Bµ problem. The spectrum at mX is given by Eqs. (38 – 41).

The low-energy superparticle masses are then obtained by evolving these parameters down to

the weak scale by the SSM renormalization group equations.

In order to solve the Bµ problem in this way, the contribution of Eqs. (38 – 41) must be

larger than or at least of the same order as the B parameter arising from gravity mediation

Bgrav ≈ m3/2. This gives the condition

B2
grav

m2
gaugino

≈ 16π2

C

M2
∗

M2
Pl

(

Λ∗

mX

)2γS

<∼ O(1), (57)

where we have taken Ma ≈
√

CFS/4πM∗ at µR ≈ Λ∗, following naive dimensional analysis. (We

have taken the group theory factor C appearing in loops to be common for all the fields.) This

7We assume that the superpotential operators W ∼ HuHd and SHuHd are absent as before.
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implies that the conformal running distance Λ∗/mX cannot be large. One application of this

mechanism arises when the gauge groups of the standard model are unified into a grand unified

group in the higher dimensional bulk, in which case successful gauge coupling unification can be

preserved even if the compactification scale L−1 is (slightly) below the conventional unification

scale [20]. In this case we can take, for example, C ≃ 5 and M∗ ≈ 1017 GeV, which allows

Λ∗/mX ≈ O(10 – 100) for γS ∼ 0.5, a sufficient energy interval to suppress the B parameter

(assuming that the relevant exponent α̂S is of order unity).

6 Anomaly Mediation

Anomaly mediation of supersymmetry breaking [3, 4] is a subtle quantum effect in which the

soft supersymmetry breaking parameters are induced due to the superconformal anomaly. The

mediation is due to the presence of the F -component VEV of the Weyl compensator, which is

required to cancel the cosmological constant once supersymmetry is broken. The remarkable

feature of anomaly mediation is its ultraviolet insensitivity. Namely, no matter how complicated

and flavor violating the theory is at high energies, once all supersymmetric thresholds are inte-

grated out, the supersymmetry breaking effects at a given energy scale are determined only by

physics at that energy scale, as was shown explicitly in [4, 21]. As a result, the flavor changing

effects are virtually absent in the soft parameters.

For the anomaly mediated supersymmetry breaking effects to dominate, direct operators that

couple the hidden and SSM sector fields in Eqs. (1, 2, 3, 4, 5) must be suppressed relative to

the gravitino mass. (In this context, we assume that the scale M in these operators is close

to MPl.) The original proposal in [3] was to physically separate the two sectors in an extra

dimension, while that in [4] was to require the absence of elementary singlet fields so that the

operators Eqs. (3, 4, 5) would be suppressed by simple dimensional reasons. The motivation for

conformal sequestering was for the purpose of suppressing the direct coupling operators using a

four-dimensional conformal field theory [7].

Our new observation that the operators in Eqs. (3, 4, 5) are suppressed by the wavefunction

renormalization makes anomaly mediation possible in an even wider class of hidden sector models

than was previously considered. For example, the models of Ref. [22] have gauge singlet fields

that acquire F -component VEVs, and can be made superconformal once a sufficient number of

extra flavors is added. If the operators linear in the gauge singlet fields are not sequestered, as

originally claimed in Ref. [11], they would be dominant over the anomaly mediated contribution.

Especially the A parameters from operators in Eq. (4) do not respect flavor in general, and

the resulting model would be generically excluded by the flavor physics data. However, these

operators actually are suppressed, and hence the anomaly mediated contribution dominates
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despite the presence of singlet fields in the hidden sector.

Depending on the amount of suppression, it is possible that either of the operators Eqs. (1, 2)

or Eqs. (3, 4, 5) give comparable contributions to the anomaly mediated contribution. Suppose,

for example, that the operators of Eq. (1) are generated by gauge mediation and that the hidden

sector shows the behavior of Case 2. In this case, if the contribution from these operators are

comparable to the anomaly mediated one, then the well-known problem of tachyonic sleptons

in anomaly mediation can be solved. In addition, in the minimal supersymmetric standard

model (MSSM), gravity mediation gives a too large B parameter: Bgrav ≈ m3/2 ≈ 100 TeV.

This may be solved if the µ term of the MSSM is generated by a VEV of a singlet field, or if

gauge mediation generates the operator of Eq. (2) at one loop, leading to a large B parameter

(≈ 16π2mI ≈ 100 TeV) that cancels Bgrav at a percent level.

7 Discussion and Conclusions

In this paper, we have discussed the impact of strong hidden sector dynamics on the soft super-

symmetry breaking parameters on general grounds. While the importance of the renormalization

effects on the operators quadratic in the hidden sector fields had been known, we have shown

they are also important on the operators linear in the hidden sector fields, despite what has been

stated in the literature. This observation has implications both on theories of supersymmetry

breaking and its mediation, as well as on phenomenology which may be probed in the near future

at collider experiments.

In particular, conformal dynamics can sequester both scalar and gaugino masses. However,

the relative speed of sequestering is not calculable in general, and it is not clear which one is

more important at the end of the conformal dynamics in a given model. In the context of gauge

mediation models, our result can be summarized as follows. If the scalar masses are suppressed

faster than the gaugino masses, we obtain a spectrum that resembles gaugino mediation at a

low compactification scale. Unlike genuine gaugino mediation, however, there is no issue with

Landau poles before reaching the unification scale. In addition, A terms exist, as well as Higgs

soft masses that cancel the µ2 mass contribution. The gravity mediated contribution that is

potentially flavor violating is less harmful than in the case without the conformal dynamics. This

case also offers a solution to the outstanding µ (Bµ) problem in the supersymmetric standard

model. On the other hand, if the gaugino masses are suppressed faster than the scalar masses,

the spectrum looks as if the “number of messengers” is less than unity. In this case, the gravity

mediated contribution is more harmful than in the case without the conformal dynamics.

In the context of gaugino mediation, the volume suppression factor tends to give B ≈ 16π2Ma,

which is unacceptable. The same mechanism as in the case of gauge mediation can lead to a
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solution to the problem. Finally, anomaly mediation may be dominant with conformal seques-

tering even if the hidden sector has a singlet field with gaugino mass and A term operators,

because they are sequestered as well.

We point out, however, that our analysis is limited by the lack of understanding of Kähler

potential renormalizations in strongly coupled theories. Not only can we not work out whether

the scalar masses or gaugino masses are sequestered more, but we could also worry about opera-

tors at even higher dimensions. In this paper, we considered only the lowest dimension operators

that can contribute to the soft supersymmetry breaking parameters. However, higher dimension

operators, such as those at cubic or quartic orders in the hidden sector fields, may be as impor-

tant if the strong renormalization effects overcome the naive suppression in power counting when

fields acquire VEVs. Without detailed knowledge of the dynamics, we cannot exclude this pos-

sibility. In addition, we assumed that the wavefunction renormalization factors are given solely

by those in the superconformal limit determined by the R charges. However, realistic theories

are necessarily perturbed by relevant operators to break supersymmetry, and it is possible that

their impact on the wavefunction factors is anomalously enhanced by strong dynamics. Note

that these two issues are related, because one can always redefine the fields such that they do

not acquire VEVs, but this will induce new relevant operators into the theory. These effects

are not possible near the Banks–Zaks fixed point [23], and hence are impossible to study using

perturbation theory.

Once the LHC discovers supersymmetry, and the ILC determines the spectrum of superparti-

cles precisely, it would be exciting to see if it shows any impact of strong hidden sector dynamics.

For this program, it will be important to better understand the consequence of strong dynamics

on the renormalization of various operators, including higher dimension ones. We hope that our

work provides a step towards achieving this goal.

Note Added

While completing this paper, we received a paper by Roy and Schmaltz [24]. It proposes to

solve the Bµ problem in gauge mediation using conformal dynamics of the hidden sector, which

overlaps with our discussion in section 4.1. They claim to obtain a spectrum identical to minimal

gaugino mediation [25], while we find that finite A terms and Higgs soft masses that cancel the

µ2 mass contribution are generic.
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A Operator Mixing

In this appendix we will give some explicit examples of how different Kähler potential operators

can mix with one another. In general, there will be certain linear combinations of operators

that evolve by power laws with definite exponents α. Some of these linear combinations may

contain global symmetry currents of the conformal field theory, and will not be renormalized at

all. In the notation of section 2, this means that the exponents α precisely cancel the known

wavefunction renormalizations that are determined by the R charges of the fields.

Supersymmetric SU(Nc) QCD with 3
2
Nc < Nf < 3Nc gives an unusually simple example,

where Nf is the number of vector-like flavors. In this theory, there are four linear combinations

of quadratic operators one can write down

Q†Q + Q̄†Q̄, Q†Q − Q̄†Q̄, Q†T aQ, Q̄†T aQ̄. (58)

The latter three correspond to the conserved U(1)B, SU(Nf )Q and SU(Nf )Q̄ currents, and hence

if these combinations appear in Eq. (1), the operators are not sequestered. On the other hand, the

first one corresponds to the U(1)A current that is anomalous under the strong SU(Nc) dynamics,

and therefore runs with an exponent αA. Unfortunately, we have no means to calculate αA. In

particular, we do not know whether it is positive or negative.

The corresponding situation in the magnetic dual theory [26] is somewhat more complicated.

In addition to the dual quarks q, q̄, there are mesons M with two indices, and hence there

are many more combinations of operators that one can write down. Mixing between operators

containing the dual quarks and mesons can happen because this theory has the superpotential

coupling Tr(Mq̄q).

We can classify the quadratic operators according to their representation under the SU(Nf )Q×
SU(Nf)Q̄ symmetry of the theory. For example, the operator proportional to

Tr(T aMT bM †), (59)

transforms as (adjoint, adjoint) under the flavor group. There are no other quadratic operators of

the same symmetry properties, and hence it does not mix with any others. It is not a conserved
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current and hence is renormalized. Because it does not mix, it renormalizes on its own with

a single exponent. One cannot prove on general grounds that it is suppressed at low energies,

but one can do explicit calculations close to the Banks–Zaks fixed point Nf ≈ 3
2
Nc.

8 Note that

weakly gauging the vector-like SU(Nf) flavor symmetry [7] would still allow this operator.

The operators

NcTr(T aMM †) + Nf(q
†T a∗q), Tr(T aMM †) − (q†T a∗q), (60)

transform as (adjoint, singlet) under the flavor group. The latter contains a conserved current,

and hence is not renormalized (not sequestered). The former, however, does not correspond to

a symmetry because of the superpotential coupling, and is hence renormalized. Again, we do

not have a general proof, but explicit calculations suggest that it is sequestered, with α > 0 at

the one-loop level. Note that the former linear combination is the “eigenvector” of the mixing

only at the one-loop level, while the precise linear combination is unknown at all orders. The

situation with the operators in which q’s are replaced by q̄’s is identical.

Finally, there are three (singlet, singlet) operators

Tr(MM †), q†q + q̄†q̄, q†q − q̄†q̄. (61)

The last one corresponds to the conserved U(1)B current and hence is not renormalized. The first

two operators mix with unknown relative coefficients. Neither of them are conserved currents

and hence should be renormalized. At the one-loop level, the “eigenvectors” of this mixing are

2Tr(MM †) − (q†q + q̄†q̄), NcTr(MM †) + Nf (q
†q + q̄†q̄). (62)

The latter is sequestered already at the one-loop level with α > 0. The former is accidentally

conserved at the one-loop level, while it should receive renormalization at higher orders. There-

fore, α < 0 at the lowest order for this operator. It is not clear at all what the signs of the α

exponents are in the strongly coupled situation.

The situation becomes even more complicated in theories with additional matter content,

such as the model with an additional adjoint used in Ref. [13].

In general, operators of the same symmetry properties mix and the degree of sequestering (if

any) is determined by the eigenvalues of the mixing matrix. Once the theory is strongly coupled,

we do not have the techniques to work them out. Even when the sequestering is plausible in

theories believed to be infrared attractive, the signs of the exponents α beyond the wavefunction

renormalization are incalculable.

8Up to three loops, there are no 1PI diagrams that renormalize this operator, and hence the renormalization
is given solely in terms of the wavefunction renormalization. There is a 1PI four-loop diagram, which should
generate a nonzero exponent α, yet we do not know its sign.
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B Generating the µ term in Gauge Mediation

In this appendix we present one simple way to generate a µ parameter of the same order as the

gaugino masses in gauge mediation. We take the messenger superfields f and f̄ to transform

under the 10 + 10∗ representation of the SU(5)SM symmetry containing the standard model

gauge group as a subgroup, and introduce the superpotential interactions

W = yffHu + ȳf̄ f̄Hd. (63)

Here, we have imposed a Z2 parity under which f and f̄ are odd while the other fields are

even. This has the advantage that mixings between the messenger and matter superfields are

forbidden, so that the problem of flavor is not reintroduced.9 The absence of a tree level µ term

is assumed.

The interactions of Eq. (63) generate operators responsible for the µ and Bµ parameters at

one loop. Integrating out f, f̄ with the interactions Eq. (63) generates

L = 3
∫

d4θ
yȳλ(mf )

∗

16π2mf
S† HuHd + h.c., (64)

and

L = 3
∫

d4θ
yȳ|λ(mf )|2

16π2m2
f

S†S HuHd + h.c., (65)

at the scale mf , where λ(mf ) is defined in Eq. (32). Integrating out f, f̄ also generates

L = 3
∫

d4θ
λ(mf )

16π2mf
S
(

|y|2H†
uHu + |ȳ|2H†

dHd

)

+ h.c.. (66)

These operators contribute to AHu
, AHd

, B, m2
Hu

and m2
Hd

. Assuming y ∼ ȳ ∼ O(1), these

provide the operators discussed in section 4: Eqs. (33, 35, 37).

9The Z2 parity makes the lightest messenger particle stable, which may overclose the universe. We can,
however, simply assume that the reheating temperature is low enough so that these particles are not produced
thermally. Alternatively, we can (slightly) modify the model. For example, we can eliminate Z2 and introduce
messenger matter mixings, whose sizes, however, are controlled by a U(1) flavor symmetry. This modifies the
third generation and Higgs mass spectra (c.f. section 3). Another possibility is to use a messenger field that
is adjoint under SU(5)SM and even under matter parity. This allows us to avoid the introduction of the flavor
problem as well as the cosmological problem, without an additional discrete symmetry.
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